Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 16: 864, 2015 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-26502986

RESUMO

BACKGROUND: Transcription of nodulation genes in rhizobial species is orchestrated by the regulatory nodD gene. Rhizobium tropici strain CIAT 899 is an intriguing species in possessing features such as broad host range, high tolerance of abiotic stresses and, especially, by carrying the highest known number of nodD genes--five--and the greatest diversity of Nod factors (lipochitooligosaccharides, LCOs). Here we shed light on the roles of the multiple nodD genes of CIAT 899 by reporting, for the first time, results obtained with nodD3, nodD4 and nodD5 mutants. METHODS: The three nodD mutants were built by insertion of Ω interposon. Nod factors were purified and identified by LC-MS/MS analyses. In addition, nodD1 and nodC relative gene expressions were measured by quantitative RT-PCR in the wt and derivative mutant strains. Phenotypic traits such as exopolysaccharide (EPS), lipopolysaccharide (LPS), swimming and swarming motilities, biofilm formation and indole acetid acid (IAA) production were also perfomed. All these experiments were carried out in presence of both inducers of CIAT 899, apigenin and salt. Finally, nodulation assays were evaluated in up to six different legumes, including common bean (Phaseolus vulgaris L.). RESULTS: Phenotypic and symbiotic properties, Nod factors and gene expression of nodD3, nodD4 and nodD5 mutants were compared with those of the wild-type (WT) CIAT 899, both in the presence and in the absence of the nod-gene-inducing molecule apigenin and of saline stress. No differences between the mutants and the WT were observed in exopolysaccharide (EPS) and lipopolysaccharide (LPS) profiles, motility, indole acetic acid (IAA) synthesis or biofilm production, either in the presence, or in the absence of inducers. Nodulation studies demonstrated the most complex regulatory system described so far, requiring from one (Leucaena leucocephala, Lotus burtii) to four (Lotus japonicus) nodD genes. Up to 38 different structures of Nod factors were detected, being higher under salt stress, except for the nodD5 mutant; in addition, a high number of structures was synthesized by the nodD4 mutant in the absence of any inducer. Probable activator (nodD3 and nodD5) or repressor roles (nodD4), possibly via nodD1 and/or nodD2, were attributed to the three nodD genes. Expression of nodC, nodD1 and each nodD studied by RT-qPCR confirmed that nodD3 is an activator of nodD1, both in the presence of apigenin and salt stress. In contrast, nodD4 might be an inducer with apigenin and a repressor under saline stress, whereas nodD5 was an inducer under both conditions. CONCLUSIONS: We report for R. tropici CIAT 899 the most complex model of regulation of nodulation genes described so far. Five nodD genes performed different roles depending on the host plant and the inducing environment. Nodulation required from one to four nodD genes, depending on the host legume. nodD3 and nodD5 were identified as activators of the nodD1 gene, whereas, for the first time, it was shown that a regulatory nodD gene-nodD4-might act as repressor or inducer, depending on the inducing environment, giving support to the hypothesis that nodD roles go beyond nodulation, in terms of responses to abiotic stresses.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Rhizobium tropici/genética , Rhizobium tropici/metabolismo
2.
FEMS Microbiol Lett ; 293(2): 220-31, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19260963

RESUMO

The root nodule bacterium Rhizobium tropici strain CIAT899 is highly stress resistant. It grows under acid conditions, in large amounts of salt, and at high osmotic pressure. An earlier study reported a substantial qualitative and quantitative effect of acid stress on the biosynthesis of Nod factors. The aim of the present work was to investigate the effect of high salt (NaCl) concentrations, another common stress factor, on Nod factor production. For this purpose, thin-layer chromatography, HPLC and MS analyses were carried out. The expression of nodulation genes was also studied using a nodP:lacZ fusion. High concentrations of sodium enhanced nod gene expression and Nod factor biosynthesis. The effect is sodium specific because high potassium or chloride concentrations did not have this effect. Under salt stress conditions, 46 different Nod factors were identified in a CIAT899 culture, compared with 29 different Nod factors under control conditions. Only 15 Nod factor structures were common to both conditions. Under salt stress conditions, 14 different new Nod factor structures were identified that were not observed as being produced under neutral or acid conditions. The implications of our results are that stress has a great influence on Nod factor biosynthesis and that new, very interesting regulatory mechanisms, worth investigating, are involved in controlling Nod factor biosynthesis.


Assuntos
Antibacterianos/farmacologia , Lipopolissacarídeos/biossíntese , Pressão Osmótica , Rhizobium tropici/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Estresse Fisiológico , Fusão Gênica Artificial , Cromatografia Líquida de Alta Pressão , Cromatografia em Camada Fina , Perfilação da Expressão Gênica , Genes Reporter , Espectrometria de Massas , Rhizobium tropici/química , Rhizobium tropici/metabolismo , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
3.
Chem Biol ; 12(9): 1029-40, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16183027

RESUMO

Rhizobium tropici CIAT899 has been cataloged as a nodulator of bean, a plant often growing in areas characterized by highly acidic soils. The purpose of this work was to explore the effects of acidity on the production of Nod factors by this strain and their impact on the establishment of effective symbioses. We report that acidity increases rhizobial Nod factors production, and we exhaustively study the nodulation factor structures produced under abiotic stress. Significant differences were observed between the structures produced at acid and neutral pH: 52 different molecules were produced at acid pH, 29 at neutral pH, and only 15 are common to bacteria grown at pH 7.0 or 4.5. The results indicate that R. tropici CIAT899 has successfully adapted to life in acidic soils and is a good inoculant for the bean under these conditions.


Assuntos
Concentração de Íons de Hidrogênio , Lipopolissacarídeos/biossíntese , Rhizobium tropici/metabolismo , Adaptação Fisiológica , Expressão Gênica , Lipopolissacarídeos/isolamento & purificação , Espectrometria de Massas , Metilação , Fixação de Nitrogênio/genética , Phaseolus/crescimento & desenvolvimento , Phaseolus/microbiologia , Rhizobium tropici/fisiologia
4.
Mol Plant Microbe Interact ; 17(6): 676-85, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15195950

RESUMO

We have investigated in Sinorhizobium fredii HH103-1 (=HH103 Str(r)) the influence of the nolR gene on the production of three different bacterial symbiotic signals: Nod factors, signal responsive (SR) proteins, and exopolysaccharide (EPS). The presence of multiple copies of nolR (in plasmid pMUS675) repressed the transcription of all the flavonoid-inducible genes analyzed: nodA, nodD1, nolO, nolX, noeL, rhcJ, hesB, and y4pF. Inactivation of nolR (mutant SVQ517) or its overexpression (presence of pMUS675) altered the amount of Nod factors detected. Mutant SVQ517 produced Nod factors carrying N-methyl residues at the nonreducing N-acetyl-glucosamine, which never have been detected in S. fredii HH103. Plasmid pMUS675 increased the amounts of EPS produced by HH103-1 and SVQ517. The flavonoid genistein repressed EPS production of HH103-1 and SVQ517 but the presence of pMUS675 reduced this repression. The presence of plasmid pMUS675 clearly decreased the secretion of SR proteins. Inactivation, or overexpression, of nolR decreased the capacity of HH103 to nodulate Glycine max. However, HH103-1 and SVQ517 carrying plasmid pMUS675 showed enhanced nodulation capacity with Vigna unguiculata. The nolR gene was positively identified in all S. fredii strains investigated, S. xinjiangense CCBAU110, and S. saheli USDA4102. Apparently, S. teranga USDA4101 does not contain this gene.


Assuntos
Proteínas de Bactérias/fisiologia , Proteínas Repressoras/fisiologia , Sinorhizobium fredii/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sequência Conservada , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Lipopolissacarídeos/biossíntese , Dados de Sequência Molecular , Mutação , Plantas/microbiologia , Polissacarídeos Bacterianos/biossíntese , Proteínas Repressoras/genética , Rhizobium/genética , Transdução de Sinais , Sinorhizobium fredii/genética , Sinorhizobium fredii/fisiologia , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...